1932

Abstract

Mammalian sperm are deposited in the vagina or the cervix/uterus at coitus or at artificial insemination, and the fertilizing sperm move through the female reproductive tract to the ampulla of the oviduct, the site of fertilization. But the destination of most sperm is not the oviduct. Most sperm are carried by retrograde fluid flow to the vagina, are phagocytosed, and/or do not pass barriers on the pathway to the oviduct. The sperm that reach the site of fertilization are the exceptions and winners of one of the most stringent selection processes in nature. This review discusses the challenges sperm encounter and how the few sperm that reach the site of fertilization overcome them. The sperm that reach the goal must navigate viscoelastic fluid, swim vigorously and cooperatively along the walls of the female tract, avoid the innate immune system, and respond to potential cues to direct their movement.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021022-040629
2024-02-15
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/animal/12/1/annurev-animal-021022-040629.html?itemId=/content/journals/10.1146/annurev-animal-021022-040629&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Reynaud K, Schuss Z, Rouach N, Holcman D. 2015. Why so many sperm cells?. Commun. Integr. Biol. 8:e1017156
    [Google Scholar]
  2. 2.
    Eisenbach M, Giojalas LC. 2006. Sperm guidance in mammals: an unpaved road to the egg. Nat. Rev. Mol. Cell Biol. 7:276–85
    [Google Scholar]
  3. 3.
    Mitchell JR, Senger PL, Rosenberger JL. 1985. Distribution and retention of spermatozoa with acrosomal and nuclear abnormalities in the cow genital tract. J. Anim. Sci. 61:956–67
    [Google Scholar]
  4. 4.
    Adefuye AO, Adeola HA, Sales KJ, Katz AA. 2016. Seminal fluid-mediated inflammation in physiology and pathology of the female reproductive tract. J. Immunol. Res. 2016:9707252
    [Google Scholar]
  5. 5.
    Lovell JW, Getty R. 1968. Fate of semen in the uterus of the sow: histologic study of endometrium during the 27 hours after natural service. Am. J. Vet. Res. 29:609–25
    [Google Scholar]
  6. 6.
    Kolle S. 2012. Live cell imaging of the oviduct. Methods Enzymol. 506:415–23
    [Google Scholar]
  7. 7.
    Owhor LE, Reese S, Kolle S. 2019. Salpingitis impairs bovine tubal function and sperm-oviduct interaction. Sci. Rep. 9:10893
    [Google Scholar]
  8. 8.
    Hasuwa H, Muro Y, Ikawa M, Kato N, Tsujimoto Y, Okabe M. 2010. Transgenic mouse sperm that have green acrosome and red mitochondria allow visualization of sperm and their acrosome reaction in vivo. Exp. Anim. 59:105–7
    [Google Scholar]
  9. 9.
    Muro Y, Hasuwa H, Isotani A, Miyata H, Yamagata K et al. 2016. Behavior of mouse spermatozoa in the female reproductive tract from soon after mating to the beginning of fertilization. Biol. Reprod. 94:80
    [Google Scholar]
  10. 10.
    Ishikawa Y, Usui T, Yamashita M, Kanemori Y, Baba T. 2016. Surfing and swimming of ejaculated sperm in the mouse oviduct. Biol. Reprod. 94:89
    [Google Scholar]
  11. 11.
    Druart X, Cognié J, Baril G, Clément F, Dacheux JL, Gatti JL. 2009. In vivo imaging of in situ motility of fresh and liquid stored ram spermatozoa in the ewe genital tract. Reproduction 138:45–53
    [Google Scholar]
  12. 12.
    Wang S, Larina IV. 2018. In vivo three-dimensional tracking of sperm behaviors in the mouse oviduct. Development 145:dev157685
    [Google Scholar]
  13. 13.
    Wang S, Larina IV. 2018. In vivo imaging of the mouse reproductive organs, embryo transfer, and oviduct cilia dynamics using optical coherence tomography. Methods Mol. Biol. 1752:53–62
    [Google Scholar]
  14. 14.
    Suarez SS. 2002. Gamete transport. Fertilization DM Hardy 2–28 San Diego, CA: Academic
    [Google Scholar]
  15. 15.
    Sobrero AJ, MacLeod J. 1962. The immediate postcoital test. Fertil. Steril. 13:184–89
    [Google Scholar]
  16. 16.
    Phillips DM, Mahler S. 1977. Leukocyte emigration and migration in the vagina following mating in the rabbit. Anat. Rec. 189:45–59
    [Google Scholar]
  17. 17.
    Phillips DM, Mahler S. 1977. Phagocytosis of spermatozoa by the rabbit vagina. Anat. Rec. 189:61–71
    [Google Scholar]
  18. 18.
    Zhang F, Dai J, Chen T. 2020. Role of Lactobacillus in female infertility via modulating sperm agglutination and immobilization. Front. Cell. Infect. Microbiol. 10:620529
    [Google Scholar]
  19. 19.
    Barbonetti A, Vassallo MR, Cinque B, Filipponi S, Mastromarino P et al. 2013. Soluble products of Escherichia coli induce mitochondrial dysfunction-related sperm membrane lipid peroxidation which is prevented by lactobacilli. PLOS ONE 8:e83136
    [Google Scholar]
  20. 20.
    Kumar V, Prabha V, Kaur S, Kaur K, Singh SK. 2011. Receptor dependent immobilization of spermatozoa by sperm immobilization factor isolated from Escherichia coli: proof of evidence. Int. J. Urol. 18:597–603
    [Google Scholar]
  21. 21.
    Prabha V, Sandhu R, Kaur S, Kaur K, Sarwal A et al. 2010. Mechanism of sperm immobilization by Escherichia coli. Adv. Urol. 2010:240268
    [Google Scholar]
  22. 22.
    Suarez SS, Pacey AA. 2006. Sperm transport in the female reproductive tract. Hum. Reprod. Update 12:23–37
    [Google Scholar]
  23. 23.
    Carballada R, Esponda P. 1992. Role of fluid from seminal vesicles and coagulating glands in sperm transport into the uterus and fertility in rats. J. Reprod. Fertil. 95:639–48
    [Google Scholar]
  24. 24.
    Murer V, Spetz JF, Hengst U, Altrogge LM, de Agostini A, Monard D. 2001. Male fertility defects in mice lacking the serine protease inhibitor protease nexin-1. PNAS 98:3029–33
    [Google Scholar]
  25. 25.
    Ramm SA, Parker GA, Stockley P. 2005. Sperm competition and the evolution of male reproductive anatomy in rodents. Proc. Biol. Sci. 272:949–55
    [Google Scholar]
  26. 26.
    Dong M, Dong Y, Bai J, Li H, Ma X et al. 2023. Interactions between microbiota and cervical epithelial, immune, and mucus barrier. Front. Cell. Infect. Microbiol. 13:1124591
    [Google Scholar]
  27. 27.
    Fair S, Meade KG, Reynaud K, Druart X, de Graaf SP. 2019. The biological mechanisms regulating sperm selection by the ovine cervix. Reproduction 158:R1–R13
    [Google Scholar]
  28. 28.
    Mullins KJ, Saacke RG. 1989. Study of the functional anatomy of bovine cervical mucosa with special reference to mucus secretion and sperm transport. Anat. Rec. 225:106–17
    [Google Scholar]
  29. 29.
    Cone RA. 2009. Barrier properties of mucus. Adv. Drug Deliv. Rev. 61:75–85
    [Google Scholar]
  30. 30.
    Kantsler V, Dunkel J, Polin M, Goldstein RE. 2013. Ciliary contact interactions dominate surface scattering of swimming eukaryotes. PNAS 110:1187–92
    [Google Scholar]
  31. 31.
    Tung CK, Suarez SS. 2021. Co-adaptation of physical attributes of the mammalian female reproductive tract and sperm to facilitate fertilization. Cells 10:1297
    [Google Scholar]
  32. 32.
    Ishimoto K, Gadelha H, Gaffney EA, Smith DJ, Kirkman-Brown J. 2017. Coarse-graining the fluid flow around a human sperm. Phys. Rev. Lett. 118:124501
    [Google Scholar]
  33. 33.
    Nosrati R, Graham PJ, Zhang B, Riordon J, Lagunov A et al. 2017. Microfluidics for sperm analysis and selection. Nat. Rev. Urol. 14:707–30
    [Google Scholar]
  34. 34.
    Nosrati R, Graham PJ, Liu Q, Sinton D. 2016. Predominance of sperm motion in corners. Sci. Rep. 6:26669
    [Google Scholar]
  35. 35.
    Denissenko P, Kantsler V, Smith DJ, Kirkman-Brown J. 2012. Human spermatozoa migration in microchannels reveals boundary-following navigation. PNAS 109:8007–10
    [Google Scholar]
  36. 36.
    Nosrati R, Driouchi A, Yip CM, Sinton D. 2015. Two-dimensional slither swimming of sperm within a micrometre of a surface. Nat. Commun. 6:8703
    [Google Scholar]
  37. 37.
    Chappell CA, Rohan LC, Moncla BJ, Wang L, Meyn LA et al. 2014. The effects of reproductive hormones on the physical properties of cervicovaginal fluid. Am. J. Obstet. Gynecol. 211:226.e1–7
    [Google Scholar]
  38. 38.
    Lai SK, Wang YY, Wirtz D, Hanes J. 2009. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61:86–100
    [Google Scholar]
  39. 39.
    Eamer L, Nosrati R, Vollmer M, Zini A, Sinton D. 2015. Microfluidic assessment of swimming media for motility-based sperm selection. Biomicrofluidics 9:044113
    [Google Scholar]
  40. 40.
    Salinas-Muñoz L, Campos-Fernández R, Olivera-Valle I, Mercader E, Fernandez-Pacheco C et al. 2019. Estradiol impairs epithelial CXCL1 gradient in the cervix to delay neutrophil transepithelial migration during insemination. J. Reprod. Immunol. 132:9–15
    [Google Scholar]
  41. 41.
    Taylor NJ. 1982. Investigation of sperm-induced cervical leucocytosis by a double mating study in rabbits. J. Reprod. Fertil. 66:157–60
    [Google Scholar]
  42. 42.
    Hawk HW. 1993. Transport and fate of spermatozoa after insemination of cattle. J. Dairy Sci. 70:1487–503
    [Google Scholar]
  43. 43.
    Kunz G, Beil D, Deininger H, Wildt L, Leyendecker G. 1996. The dynamics of rapid sperm transport through the female genital tract: evidence from vaginal sonography of uterine peristalsis and hysterosalpingoscintigraphy. Hum. Reprod. 11:627–32
    [Google Scholar]
  44. 44.
    Dittrich R, Henning J, Maltaris T, Hoffmann I, Oppelt PG et al. 2012. Extracorporeal perfusion of the swine uterus: effect of human seminal plasma. Andrologia 44:Suppl. 1543–49
    [Google Scholar]
  45. 45.
    Schjenken JE, Robertson SA. 2020. The female response to seminal fluid. Physiol. Rev. 100:1077–117
    [Google Scholar]
  46. 46.
    Rodriguez-Martinez H, Martinez EA, Calvete JJ, Peña Vega FJ, Roca J 2021. Seminal plasma: Relevant for fertility?. Int. J. Mol. Sci. 22:4368
    [Google Scholar]
  47. 47.
    Willenburg KL, Miller GM, Rodriguez-Zas SL, Knox RV. 2003. Influence of hormone supplementation to extended semen on artificial insemination, uterine contractions, establishment of a sperm reservoir, and fertility in swine. J. Anim. Sci. 81:821–29
    [Google Scholar]
  48. 48.
    Pena FJ, Dominguez JC, Carbajo M, Anel L, Alegre B. 1998. Treatment of swine summer infertility syndrome by means of oxytocin under field conditions. Theriogenology 49:829–36
    [Google Scholar]
  49. 49.
    Duzinski K, Knecht D, Srodon S. 2014. The use of oxytocin in liquid semen doses to reduce seasonal fluctuations in the reproductive performance of sows and improve litter parameters–a 2-year study. Theriogenology 81:780–86
    [Google Scholar]
  50. 50.
    Kaeoket K, Persson E, Dalin AM. 2003. Influence of pre-ovulatory insemination and early pregnancy on the infiltration by cells of the immune system in the sow endometrium. Anim. Reprod. Sci. 75:55–71
    [Google Scholar]
  51. 51.
    Mattner PE. 1968. The distribution of spermatozoa and leucocytes in the female genital tract in goats and cattle. J. Reprod. Fertil. 17:253–61
    [Google Scholar]
  52. 52.
    Thompson LA, Barratt CL, Bolton AE, Cooke ID. 1992. The leukocytic reaction of the human uterine cervix. Am. J. Reprod. Immunol. 28:85–89
    [Google Scholar]
  53. 53.
    Fichtner T, Kotarski F, Gärtner U, Conejeros I, Hermosilla C et al. 2020. Bovine sperm samples induce different net phenotypes in a NADPH oxidase-, PAD4-, and Ca++-dependent process. Biol. Reprod. 102:902–14
    [Google Scholar]
  54. 54.
    Zambrano F, Namuncura C, Uribe P, Schulz M, Pezo F et al. 2021. Swine spermatozoa trigger aggregated neutrophil extracellular traps leading to adverse effects on sperm function. J. Reprod. Immunol. 146:103339
    [Google Scholar]
  55. 55.
    Zambrano F, Silva L, Uribe P, Gärtner U, Taubert A et al. 2021. SOCE-inhibitor reduced human sperm-induced formation of neutrophil extracellular traps. Reproduction 161:21–29
    [Google Scholar]
  56. 56.
    Akthar I, Marey MA, Kim Y, Shimada M, Suarez SS, Miyamoto A. 2021. Sperm interaction with the uterine innate immune system: toll-like receptor 2 (TLR2) is a main sensor in cattle. Reprod. Fertil. Dev. 34:139–48
    [Google Scholar]
  57. 57.
    Rath D, Knorr C, Taylor U. 2016. Communication requested: boar semen transport through the uterus and possible consequences for insemination. Theriogenology 85:94–104
    [Google Scholar]
  58. 58.
    Taylor U, Rath D, Zerbe H, Schuberth HJ. 2008. Interaction of intact porcine spermatozoa with epithelial cells and neutrophilic granulocytes during uterine passage. Reprod. Domest. Anim. 43:166–75
    [Google Scholar]
  59. 59.
    Hunter RHF. 1981. Sperm transport and reservoirs in the pig oviduct in relation to the time of ovulation. J. Reprod. Fert. 63:109–17
    [Google Scholar]
  60. 60.
    Álvarez-Rodríguez M, Martinez CA, Wright D, Rodríguez-Martinez H. 2020. The role of semen and seminal plasma in inducing large-scale genomic changes in the female porcine peri-ovulatory tract. Sci. Rep. 10:5061
    [Google Scholar]
  61. 61.
    O'Leary S, Jasper MJ, Warnes GM, Armstrong DT, Robertson SA. 2004. Seminal plasma regulates endometrial cytokine expression, leukocyte recruitment and embryo development in the pig. Reproduction 128:237–47
    [Google Scholar]
  62. 62.
    Jiwakanon J, Berg M, Persson E, Fossum C, Dalin AM. 2010. Cytokine expression in the gilt oviduct: effects of seminal plasma, spermatozoa and extender after insemination. Anim. Reprod. Sci. 119:244–57
    [Google Scholar]
  63. 63.
    Jiwakanon J, Persson E, Berg M, Dalin AM. 2011. Influence of seminal plasma, spermatozoa and semen extender on cytokine expression in the porcine endometrium after insemination. Anim. Reprod. Sci. 123:210–20
    [Google Scholar]
  64. 64.
    Troedsson MH, Loset K, Alghamdi AM, Dahms B, Crabo BG. 2001. Interaction between equine semen and the endometrium: the inflammatory response to semen. Anim. Reprod. Sci. 68:273–78
    [Google Scholar]
  65. 65.
    Woelders H, Matthijs A. 2001. Phagocytosis of boar spermatozoa in vitro and in vivo. Reprod. Suppl. 58:113–27
    [Google Scholar]
  66. 66.
    Hourcade JD, Pérez-Crespo M, Fernández-González R, Pintado B, Gutiérrez-Adán A. 2010. Selection against spermatozoa with fragmented DNA after postovulatory mating depends on the type of damage. Reprod. Biol. Endocrinol. 8:9
    [Google Scholar]
  67. 67.
    Xiong W, Wang Z, Shen C. 2019. An update of the regulatory factors of sperm migration from the uterus into the oviduct by genetically manipulated mice. Mol. Reprod. Dev. 86:935–55
    [Google Scholar]
  68. 68.
    Fujihara Y, Noda T, Kobayashi K, Oji A, Kobayashi S et al. 2019. Identification of multiple male reproductive tract-specific proteins that regulate sperm migration through the oviduct in mice. PNAS 116:18498–506
    [Google Scholar]
  69. 69.
    Frayne J, Hall L. 1998. The gene for the human tMDC I sperm surface protein is non-functional: implications for its proposed role in mammalian sperm-egg recognition. Biochem. J. 334:1171–76
    [Google Scholar]
  70. 70.
    Qu Y, Chen Q, Guo S, Ma C, Lu Y et al. 2021. Cooperation-based sperm clusters mediate sperm oviduct entry and fertilization. Protein Cell 12:810–17
    [Google Scholar]
  71. 71.
    Phuyal S, Suarez SS, Tung CK. 2022. Biological benefits of collective swimming of sperm in a viscoelastic fluid. Front. Cell Dev. Biol. 10:961623
    [Google Scholar]
  72. 72.
    Packard CR, Unnikrishnan S, Phuyal S, Cheong SH, Manning ML et al. 2023. Self-organized vortex phases and hydrodynamic interactions in Bos taurus sperm cells. arXiv 2303:02697. https://doi.org/10.48550/arXiv.2303.02697
    [Crossref]
  73. 73.
    Harwalkar K, Ford MJ, Teng K, Yamanaka N, Yang B et al. 2021. Anatomical and cellular heterogeneity in the mouse oviduct—its potential roles in reproduction and preimplantation development. Biol. Reprod. 104:1249–61
    [Google Scholar]
  74. 74.
    Ulrich ND, Shen Y-C, Ma Q, Yang K, Hannum DF et al. 2022. Cellular heterogeneity of human fallopian tubes in normal and hydrosalpinx disease states identified using scRNA-seq. Dev. Cell 57:914–29.e7
    [Google Scholar]
  75. 75.
    Dinh HQ, Lin X, Abbasi F, Nameki R, Haro M et al. 2021. Single-cell transcriptomics identifies gene expression networks driving differentiation and tumorigenesis in the human fallopian tube. Cell Rep. 35:108978
    [Google Scholar]
  76. 76.
    Ford MJ, Harwalkar K, Pacis AS, Maunsell H, Wang YC et al. 2021. Oviduct epithelial cells constitute two developmentally distinct lineages that are spatially separated along the distal-proximal axis. Cell Rep. 36:109677
    [Google Scholar]
  77. 77.
    McGlade EA, Herrera GG, Stephens KK, Olsen SLW, Winuthayanon S et al. 2021. Cell-type specific analysis of physiological action of estrogen in mouse oviducts. FASEB J. 35:e21563
    [Google Scholar]
  78. 78.
    Hu Z, Artibani M, Alsaadi A, Wietek N, Morotti M et al. 2020. The repertoire of serous ovarian cancer non-genetic heterogeneity revealed by single-cell sequencing of normal fallopian tube epithelial cells. Cancer Cell 37:226–42.e7
    [Google Scholar]
  79. 79.
    Ezzati M, Djahanbakhch O, Arian S, Carr BR. 2014. Tubal transport of gametes and embryos: a review of physiology and pathophysiology. J. Assist. Reprod. Genet. 31:1337–47
    [Google Scholar]
  80. 80.
    Hino T, Yanagimachi R. 2019. Active peristaltic movements and fluid production of the mouse oviduct: their roles in fluid and sperm transport and fertilization. Biol. Reprod. 101:40–49
    [Google Scholar]
  81. 81.
    La Spina FA, Puga Molina LC, Romarowski A, Vitale AM, Falzone TL et al. 2016. Mouse sperm begin to undergo acrosomal exocytosis in the upper isthmus of the oviduct. Dev. Biol. 411:172–82
    [Google Scholar]
  82. 82.
    Hino T, Muro Y, Tamura-Nakano M, Okabe M, Tateno H, Yanagimachi R. 2016. The behavior and acrosomal status of mouse spermatozoa in vitro, and within the oviduct during fertilization after natural mating. Biol. Reprod. 95:50
    [Google Scholar]
  83. 83.
    Jin M, Fujiwara E, Kakiuchi Y, Okabe M, Satouh Y et al. 2011. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. PNAS 108:4892–96
    [Google Scholar]
  84. 84.
    Orr TJ, Brennan PL. 2015. Sperm storage: distinguishing selective processes and evaluating criteria. Trends Ecol. Evol. 30:261–72
    [Google Scholar]
  85. 85.
    Hunter RH, Leglise PC. 1971. Tubal surgery in the rabbit: fertilization and polyspermy after resection of the isthmus. Am. J. Anat. 132:45–52
    [Google Scholar]
  86. 86.
    Hunter RH, Leglise PC. 1971. Polyspermic fertilization following tubal surgery in pigs, with particular reference to the role of the isthmus. J. Reprod. Fertil. 24:233–46
    [Google Scholar]
  87. 87.
    Pollard JW, Plante C, King WA, Hansen PJ, Betteridge KJ, Suarez SS. 1991. Fertilizing capacity of bovine sperm may be maintained by binding of oviductal epithelial cells. Biol. Reprod. 44:102–7
    [Google Scholar]
  88. 88.
    Smith TT, Nothnick WB. 1997. Role of direct contact between spermatozoa and oviductal epithelial cells in maintaining rabbit sperm viability. Biol. Reprod. 56:83–89
    [Google Scholar]
  89. 89.
    Smith TT, Yanagimachi R. 1990. The viability of hamster spermatozoa stored in the isthmus of the oviduct: the importance of sperm-epithelium contact for sperm survival. Biol. Reprod. 42:450–57
    [Google Scholar]
  90. 90.
    Dobrinski I, Smith TT, Suarez SS, Ball BA. 1997. Membrane contact with oviductal epithelium modulates the intracellular calcium concentration of equine spermatozoa in vitro. Biol. Reprod. 56:861–69
    [Google Scholar]
  91. 91.
    Dobrinski I, Suarez SS, Ball BA. 1996. Intracellular calcium concentration in equine spermatozoa attached to oviductal epithelial cells in vitro. Biol. Reprod. 54:783–88
    [Google Scholar]
  92. 92.
    Lefebvre R, Lo MC, Suarez SS. 1997. Bovine sperm binding to oviductal epithelium involves fucose recognition. Biol. Reprod. 56:1198–204
    [Google Scholar]
  93. 93.
    Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME et al. 2004. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. PNAS 101:17033–38
    [Google Scholar]
  94. 94.
    Fukui S, Feizi T, Galustian C, Lawson AM, Chai W. 2002. Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat. Biotechnol. 20:1011–17
    [Google Scholar]
  95. 95.
    Kadirvel G, Machado SA, Korneli C, Collins E, Miller P et al. 2012. Porcine sperm bind to specific 6-sialylated biantennary glycans to form the oviduct reservoir. Biol. Reprod. 87:147
    [Google Scholar]
  96. 96.
    Machado SA, Kadirvel G, Daigneault BW, Korneli C, Miller P et al. 2014. Lewisx-containing glycans on the porcine oviductal epithelium contribute to formation of the sperm reservoir. Biol. Reprod. 91:140
    [Google Scholar]
  97. 97.
    Machado SA, Sharif M, Kadirvel G, Bovin N, Miller DJ. 2020. Adhesion to oviduct glycans regulates porcine sperm Ca2+ influx and viability. PLOS ONE 15:e0237666
    [Google Scholar]
  98. 98.
    Hughes JR, McMorrow KJ, Bovin N, Miller DJ. 2023. An oviduct glycan increases sperm lifespan by diminishing ubiquinone and production of reactive oxygen species. bioRxiv. 523174. https://doi.org/10.1101/2023.01.08.523174
    [Crossref]
  99. 99.
    Holt WV. 2011. Mechanisms of sperm storage in the female reproductive tract: an interspecies comparison. Reprod. Domest. Anim. 46:Suppl. 268–74
    [Google Scholar]
  100. 100.
    Suarez SS. 2001. Carbohydrate-mediated formation of the oviductal sperm reservoir in mammals. Cells Tissues Organs 168:105–12
    [Google Scholar]
  101. 101.
    Dobrinski I, Ignotz GG, Thomas PG, Ball BA. 1996. Role of carbohydrates in the attachment of equine spermatozoa to uterine tubal (oviductal) epithelial cells in vitro. Am. J. Vet. Res. 57:1635–39
    [Google Scholar]
  102. 102.
    DeMott RP, Lefebvre R, Suarez SS. 1995. Carbohydrates mediate the adherence of hamster sperm to oviductal epithelium. Biol. Reprod. 52:1395–403
    [Google Scholar]
  103. 103.
    Dutta S, Aoki K, Doungkamchan K, Tiemeyer M, Bovin N, Miller DJ. 2019. Sulfated Lewis A trisaccharide on oviduct membrane glycoproteins binds bovine sperm and lengthens sperm lifespan. J. Biol. Chem. 294:13445–63
    [Google Scholar]
  104. 104.
    Coughlan JM, Matute DR. 2020. The importance of intrinsic postzygotic barriers throughout the speciation process. Philos. Trans. R. Soc. Lond. B 375:20190533
    [Google Scholar]
  105. 105.
    Turissini DA, McGirr JA, Patel SS, David JR, Matute DR. 2018. The rate of evolution of postmating-prezygotic reproductive isolation in Drosophila. Mol. Biol. Evol. 35:312–34
    [Google Scholar]
  106. 106.
    Ahmed-Braimah YH. 2016. Multiple genes cause postmating prezygotic reproductive isolation in the Drosophila virilis group. G3 6:4067–76
    [Google Scholar]
  107. 107.
    Ålund M, Immler S, Rice AM, Qvarnström A. 2013. Low fertility of wild hybrid male flycatchers despite recent divergence. Biol. Lett. 9:20130169
    [Google Scholar]
  108. 108.
    Birkhead TR, Brillard JP. 2007. Reproductive isolation in birds: postcopulatory prezygotic barriers. Trends Ecol. Evol. 22:266–72
    [Google Scholar]
  109. 109.
    Birkhead TR, Møller AP. 1993. Sexual selection and the temporal separation of reproductive events - sperm storage data from reptiles, birds and mammals. Biol. J. Linnean Soc. 50:295–311
    [Google Scholar]
  110. 110.
    Holt WV, Fazeli A. 2016. Sperm storage in the female reproductive tract. Annu. Rev. Anim. Biosci. 4:291–310
    [Google Scholar]
  111. 111.
    Jiwakanon J, Persson E, Kaeoket K, Dalin AM. 2005. The sow endosalpinx at different stages of the oestrous cycle and at anoestrus: studies on morphological changes and infiltration by cells of the immune system. Reprod. Domest. Anim. 40:28–39
    [Google Scholar]
  112. 112.
    Hafner LM. 2015. Pathogenesis of fallopian tube damage caused by Chlamydia trachomatis infections. Contraception 92:108–15
    [Google Scholar]
  113. 113.
    Mousavi SO, Mohammadi R, Amjadi F, Zandieh Z, Aghajanpour S et al. 2021. Immunological response of fallopian tube epithelial cells to spermatozoa through modulating cytokines and chemokines. J. Reprod. Immunol. 146:103327
    [Google Scholar]
  114. 114.
    Lefebvre R, Suarez SS. 1996. Effect of capacitation on bull sperm binding to homologous oviductal epithelium. Biol. Reprod. 54:575–82
    [Google Scholar]
  115. 115.
    Töpfer-Petersen E, Ekhlasi-Hundrieser M, Tsolova M. 2008. Glycobiology of fertilization in the pig. Int. J. Dev. Biol. 52:717–36
    [Google Scholar]
  116. 116.
    Hung PH, Suarez SS. 2012. Alterations to the bull sperm surface proteins that bind sperm to oviductal epithelium. Biol. Reprod. 87:88
    [Google Scholar]
  117. 117.
    Chang H, Suarez SS. 2012. Unexpected flagellar movement patterns and epithelial binding behavior of mouse sperm in the oviduct. Biol. Reprod. 86:140
    [Google Scholar]
  118. 118.
    Simons J, Olson S, Cortez R, Fauci L. 2014. The dynamics of sperm detachment from epithelium in a coupled fluid-biochemical model of hyperactivated motility. J. Theor. Biol. 354:81–94
    [Google Scholar]
  119. 119.
    Sharif M, Hickl V, Juarez G, Di X, Kerns K et al. 2022. Hyperactivation is sufficient to release porcine sperm from immobilized oviduct glycans. Sci. Rep. 12:6446
    [Google Scholar]
  120. 120.
    Schuetz AW, Dubin NH. 1981. Progesterone and prostaglandin secretion by ovulated rat cumulus cell-oocyte complexes. Endocrinology 108:457–63
    [Google Scholar]
  121. 121.
    Vanderhyden BC, Telfer EE, Eppig JJ. 1992. Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro. Biol. Reprod. 46:1196–204
    [Google Scholar]
  122. 122.
    Mirihagalle S, Hughes JR, Miller DJ. 2022. Progesterone-induced sperm release from the oviduct sperm reservoir. Cells 11:1622
    [Google Scholar]
  123. 123.
    Hunter RH, Cook B, Poyser NL. 1983. Regulation of oviduct function in pigs by local transfer of ovarian steroids and prostaglandins: a mechanism to influence sperm transport. Eur. J. Obstet. Gynecol. Reprod. Biol. 14:225–32
    [Google Scholar]
  124. 124.
    Pharazyn A, Foxcroft GR, Aherne FX. 1991. Temporal relationship between plasma progesterone concentrations in the utero-ovarian and jugular veins during early pregnancy in the pig. Anim. Reprod. Sci. 26:323–32
    [Google Scholar]
  125. 125.
    Ardon F, Markello RD, Hu L, Deutsch ZI, Tung C-K et al. 2016. Dynamics of bovine sperm interaction with epithelium differ between oviductal isthmus and ampulla. Biol. Reprod. 95:90
    [Google Scholar]
  126. 126.
    Raveshi MR, Abdul Halim MS, Agnihotri SN, O'Bryan MK, Neild A, Nosrati R 2021. Curvature in the reproductive tract alters sperm-surface interactions. Nat. Commun. 12:3446
    [Google Scholar]
  127. 127.
    Kantsler V, Dunkel J, Blayney M, Goldstein RE. 2014. Rheotaxis facilitates upstream navigation of mammalian sperm cells. eLife 3:e02403
    [Google Scholar]
  128. 128.
    Miki K, Clapham DE. 2013. Rheotaxis guides mammalian sperm. Curr. Biol. 23:443–52
    [Google Scholar]
  129. 129.
    Hwang JY, Chung J-J. 2023. Catsper calcium channels: 20 years on. Physiology 38:125–40
    [Google Scholar]
  130. 130.
    Schiffer C, Rieger S, Brenker C, Young S, Hamzeh H et al. 2020. Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca2+ signaling. EMBO J. 39:e102363
    [Google Scholar]
  131. 131.
    Tung CK, Ardon F, Roy A, Koch DL, Suarez SS, Wu M. 2015. Emergence of upstream swimming via a hydrodynamic transition. Phys. Rev. Lett. 114:108102
    [Google Scholar]
  132. 132.
    Oren-Benaroya R, Orvieto R, Gakamsky A, Pinchasov M, Eisenbach M. 2008. The sperm chemoattractant secreted from human cumulus cells is progesterone. Hum. Reprod. 23:2339–45
    [Google Scholar]
  133. 133.
    Guidobaldi HA, Teves ME, Unates DR, Anastasia A, Giojalas LC 2008. Progesterone from the cumulus cells is the sperm chemoattractant secreted by the rabbit oocyte cumulus complex. PLOS ONE 3:e3040
    [Google Scholar]
  134. 134.
    Xiao W, Yu M, Yuan Y, Liu X, Chen Y. 2022. Thermotaxis of mammalian sperm. Mol. Hum. Reprod. 28:gaac027
    [Google Scholar]
  135. 135.
    Bahat A, Caplan SR, Eisenbach M. 2012. Thermotaxis of human sperm cells in extraordinarily shallow temperature gradients over a wide range. PLOS ONE 7:e41915
    [Google Scholar]
  136. 136.
    Bahat A, Eisenbach M. 2006. Sperm thermotaxis. Mol. Cell. Endocrinol. 252:115–19
    [Google Scholar]
  137. 137.
    Boryshpolets S, Pérez-Cerezales S, Eisenbach M. 2015. Behavioral mechanism of human sperm in thermotaxis: a role for hyperactivation. Hum. Reprod. 30:884–92
    [Google Scholar]
  138. 138.
    Hunter RH, Nichol R. 1986. A preovulatory temperature gradient between the isthmus and ampulla of pig oviducts during the phase of sperm storage. J. Reprod. Fertil. 77:599–606
    [Google Scholar]
  139. 139.
    Stock C, Ludwig FT, Hanley PJ, Schwab A. 2013. Roles of ion transport in control of cell motility. Compr. Physiol. 3:59–119
    [Google Scholar]
  140. 140.
    Wachten D, Jikeli JF, Kaupp UB. 2017. Sperm sensory signaling. Cold Spring Harb. Perspect. Biol. 9:a028225
    [Google Scholar]
  141. 141.
    Martin-Hidalgo D, Gil MC, Hurtado de Llera A, Perez CJ, Bragado MJ, Garcia-Marin LJ. 2018. Boar sperm hyperactivated motility is induced by temperature via an intracellular calcium-dependent pathway. Reprod. Fertil. Dev. 30:1462–71
    [Google Scholar]
  142. 142.
    Kashio M. 2021. Thermosensation involving thermo-TRPs. Mol. Cell. Endocrinol. 520:111089
    [Google Scholar]
  143. 143.
    Kashio M, Tominaga M. 2022. TRP channels in thermosensation. Curr. Opin. Neurobiol. 75:102591
    [Google Scholar]
  144. 144.
    Patapoutian A, Peier AM, Story GM, Viswanath V. 2003. ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat. Rev. Neurosci. 4:529–39
    [Google Scholar]
  145. 145.
    Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. 2023. Progress in the structural basis of thermoTRP channel polymodal gating. Int. J. Mol. Sci. 24:743
    [Google Scholar]
  146. 146.
    Koivisto AP, Belvisi MG, Gaudet R, Szallasi A. 2022. Advances in TRP channel drug discovery: from target validation to clinical studies. Nat. Rev. Drug Discov. 21:41–59
    [Google Scholar]
  147. 147.
    Diemer J, Hahn J, Goldenbogen B, Müller K, Klipp E. 2021. Sperm migration in the genital tract—in silico experiments identify key factors for reproductive success. PLOS Comput. Biol. 17:e1009109
    [Google Scholar]
  148. 148.
    Soto-Heras S, Sakkas D, Miller DJ. 2023. Sperm selection by the oviduct: perspectives for male fertility and assisted reproductive technologies. Biol. Reprod. 108:538–52
    [Google Scholar]
/content/journals/10.1146/annurev-animal-021022-040629
Loading
/content/journals/10.1146/annurev-animal-021022-040629
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error